Carbon Film Resistors

Features:

- Automatically insertable
- High quality performance
- Flame retardant type available
- Cost effective and commonly used
- Availability of very low or very high ohmic value can be supplied on a case to case basis

Explanation of Part Numbers:

R	25	G	103	J	T	XX
1	2		3	4	5	6

1 Style:

R = Carbon Film Fixed Resistors

2 Wattage:

$08=1 / 8 \mathrm{watt}$	$25=1 / 4 \mathrm{watt}$	$50=1 / 2 \mathrm{watt}$
$100=1$ watt	$200=2$ watt	$300 \mathrm{~S}=3 \mathrm{watt}$

3 Nominal Resistance Value:

E24 Series (5\% Tolerance)
The first two digits are significant figures of resistance and the third digit denotes the number of zeros (decimal point is expressed by the letter " R ").
i.e. $102=1 \mathrm{k} \Omega$
$1 R 2=1.2 \Omega$
4 Tolerance:
$J= \pm 5 \% \quad G= \pm 2 \%$

5 Packaging:

T = Tape \& Reel
B = Bulk
TB = Tape \& Box
$\mathrm{A}=\mathrm{Ammo}$

6 Lead Forming:

PN = Panasert Type \quad PA1 $=$ Avisert Type 1
PA2 $=$ Avisert Type $2 \quad$ PA3 $=$ Avisert Type 3
*For all other requests, please consult factory

Dimensions:

Carbon Film Resistors

Normal Size					
Style	Power Rating at 70ㅇ	Dimension (mm)			
	D Max.	L Max.	ød ${ }_{-0.05}^{+0.02}$	H ± 3	
R08	$1 / 8 \mathrm{~W}(0.125 \mathrm{~W})$	1.85	3.5	0.5	28
R25	$1 / 4 \mathrm{~W}(0.25 \mathrm{~W})$	2.5	6.8	0.6	28
R50	$1 / 2 \mathrm{~W}(0.5 \mathrm{~W})$	3.5	10.0	0.6	28
R100	$1 W$	5.5	16.0	0.8	28
R200	$2 W$	6.5	17.5	0.8	28

Small Size					
Style	Power Rating at 700	Dimension (mm)			
	D Max.	L Max.	ød ${ }_{-0.05}^{+0.02}$	H ± 3	
R25S	$1 / 4 \mathrm{~W}(0.25 \mathrm{~W})$	1.85	3.5	0.5	28
R50S	$1 / 2 \mathrm{~W}(0.5 \mathrm{~W})$	3.0	9.0	0.6	28
R50SS	$1 / 2 \mathrm{~W}(0.5 \mathrm{~W})$	2.5	6.8	0.6	28
R100SS	$1 W$	5.0	12.0	0.7	28
R200S	$2 W$	5.5	16.0	0.8	28
R300S	$3 W$	6.5	17.5	0.8	28

Rating

Style	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Resistance Range
R08 R25S	200 V	400 V	400 V	$.22 \Omega-22 \mathrm{M} \Omega$
R25	250 V	500 V	500 V	$.22 \Omega-22 \mathrm{M} \Omega$
R50SS	250 V	500 V	250 V	$1 \Omega-10 \mathrm{M} \Omega$
R50 R50S	350 V	700 V	700 V	$.47 \Omega-22 \mathrm{M} \Omega$
R100 R100S R100SS	500 V	1000 V	1000 V	$.1 \Omega-10 \mathrm{M} \Omega$
R200 R200S R300S	500 V	1000 V	1000 V	$.62 \Omega-10 \mathrm{M} \Omega$

Carbon Film Resistors

Performance Specifications

Characteristics	Test Methods	Limits		
Temperature coefficient $\text { JIS - C - } 5202 \quad 5.2$	Natural resistance change per temp. degree centigrade. $\frac{\mathrm{R}_{2}-\mathrm{R}_{1}}{\mathrm{R}_{1}\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)} \times 10^{6}\left(\mathrm{PPM} /{ }^{\circ} \mathrm{C}\right)$ R_{1} : Resistance value at room temperature (t_{1}) R_{2} : Resistance value at room temp. plus $100^{\circ} \mathrm{C}\left(t_{2}\right)$	$\begin{gathered} \text { Range } \\ \leq 10 \Omega \\ 11 \Omega-99 \mathrm{~K} \Omega \\ 100 \mathrm{~K} \Omega-1 \mathrm{M} \Omega \\ 1.1 \mathrm{M} \Omega-10 \mathrm{M} \Omega \end{gathered}$	T.C.R.$\begin{aligned} & 0 \sim \pm 350 \mathrm{PPM} /{ }^{\circ} \mathrm{C} \\ & 0 \sim \pm 450 \mathrm{PPM} /{ }^{\circ} \mathrm{C} \\ & 0 \sim \pm 700 \mathrm{PPM} /{ }^{\circ} \mathrm{C} \\ & 0 \sim \pm 1500 \mathrm{PPM} /{ }^{\circ} \mathrm{C} \end{aligned}$	
Dielectric withstanding voltage JIS - C - 52025.7	Resistors shall be clamped in the trough of a 90° metallic V - block and shall be tested at AC potential respectively specified in the above list for $60+10 /-0$ seconds.	No evidence of flashover, mechanical damage, arcing or insulation break down.		
Temperature cycling JIS - C - 52027.4	Resistance change after continuous five cycles for duty cycle specified below:	Resistance change rate is $\pm 1 \%+0.05 \Omega$). No evidence of mechanical damage		
	Step \quad Temperature \quad Time			
	$1-55^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C} \quad 30$ minutes			
	2 Room temp			
	$3 \quad+155^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C} \quad 30$ minutes			
	$4 \quad$ Room temp $10 \sim 15$ minutes			
Short - time overload JIS - C - 52025.5	Permanent resistance change after the application of a potential of 2.5 times RCWV for 5 seconds.	Resistance change rate is $\pm(1 \%+0.05 \Omega)$ No evidence of mechanical damage		
Load life in humidity$\text { JIS - C - } 52027.9$	Resistance change after 1,000 hours operating at RCWV with duty cycle of 1.5 hours "on" 0.5 hour "off" in a humidity test chamber controlled at $40^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ and 90 to 95% relative humidity.	Resistance value		-R/R
		$\begin{gathered} \text { NORMAL } \\ \text { TYPE } \end{gathered}$	Less than $100 \mathrm{~K} \Omega$ $100 \mathrm{~K} \Omega$ or more	$\begin{aligned} & \hline \pm 3 \% \\ & \pm 5 \% \\ & \hline \end{aligned}$
		$\begin{array}{\|c\|} \hline \text { FLAME } \\ \text { RETARDANT } \\ \text { TYPE } \\ \hline \end{array}$	Less than $100 \mathrm{~K} \Omega$ $100 \mathrm{~K} \Omega$ or more	$\begin{aligned} & \pm 5 \% \\ & \pm 10 \% \end{aligned}$
$\begin{gathered} \text { Load life } \\ \text { JIS - C-5202 } 7.10 \end{gathered}$	Permanent resistance change after 1,000 hours operating at RCWV, with duty cycle of 1.5 hours "on", 0.5 hour "off" at $70^{\circ} \mathrm{C} \pm$ $2^{\circ} \mathrm{C}$ ambient.	Resistance value		-R/R
		NORMAL TYPE	Less than $56 \mathrm{~K} \Omega$ $56 \mathrm{~K} \Omega$ or more	$\begin{aligned} & \pm 2 \% \\ & \pm 3 \% \\ & \hline \end{aligned}$
			Less than $100 \mathrm{~K} \Omega$ $100 \mathrm{~K} \Omega$ or more	$\begin{aligned} & \pm 5 \% \\ & \pm 10 \% \end{aligned}$
Insulation resistance JIS - C - 52025.6	Resistors shall be clamped in the trough of a 90° metallic V-block and shall be tested at DC potential respectively specified in the above list for $60+10 /-0$ seconds.	Insulation resistance is $10,000 \mathrm{M} \Omega \mathrm{Min}$.		
Terminal strength JIS - C - 52026.1	Direct load : Resistance to a 2.5 kgs direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test : Terminal leads shall be bent through 90 at point of about 6 mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations.	No evidence of mechanical damage		
Resistance to soldering heat $\text { JIS - C - } 52026.4$	Permanent resistance change when leads immersed to 3.2 mm to 4.8 mm from the body in $350^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$ solder for 3 ± 0.5 seconds	Resistance change rate is $\pm(1 \%+0.05 \mathrm{~W})$. No evidence of mechanical damage		
Solderability JIS - C - 52026.5	The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Test temp. of solder: $235^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ Dwell time in solder : $3+0.5 /-0$ seconds	95\% coverage Min.		
Resistance to solvent $\text { JIS - C - } 52026.9$	Specimens shall be immersed in a bath of trichloroethane completely for 3 minutes with ultrasonic.	No deterioration of protective coatings and markings		

*RCWV $=$ Rated Continuous Working Voltage $=\sqrt{\text { Rated Power } \times \text { Resistance Value }}$

