Construction

Overcoating

Dimensions

Circuit

Unit: mm

| Type |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Dimensions $\quad \mathbf{L}$

Ratings

Type	Rated Power at $70^{\circ} \mathbf{C}$	Max. Working Voltage	Max. Overload Voltage	T.C.R. $\left(\mathbf{p p m} / /^{\circ} \mathrm{C}\right)$	Resistance	Number of ($\pm 5 \%)$ $\mathbf{E - 1 2}$	Number of of Terminals	Operating Temperature Range
CRN16 10R CRN16 10S	$1 / 16 \mathrm{~W}$	50 V	100 V	± 200	$10 \Omega \sim 1 \mathrm{M} \Omega$	10	8	$-55^{\circ} \mathrm{C} \sim+125^{\circ} \mathrm{C}$

Part Numbering System

103		
Nominal Resistance		
Resistors	-risit	$\begin{aligned} & \text { E24 Series } \\ & \text { EX } 2.2 \Omega=2 R 2 \\ & 100 \Omega=101 \end{aligned}$
	- ${ }^{\text {- }}$ -	E96 Series EX 10.2R=10R2 $10 \mathrm{k} \Omega=1002$
j umper		000

1	T
Resistance	Packaging
	T = Tape
$\mathrm{J}= \pm 5 \%$	

Thick Film Chip Network Arrays

Item	5\%	Test Method
Temperature Cycling	$\pm(2 \%+0.1 \Omega)$	$\text { J IS C5202 } 7.4$ Cycle between $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ for 5 cycles
Low Temperature Operation	$\pm(2 \%+0.1 \Omega)$	1.5 Hr at $-55^{\circ} \mathrm{C}$ followed by 45 Minutes of RCWV
Short Time Overload	$\pm(2 \%+0.1 \Omega)$	JIS C5202 5.5 Apply rated voltage 2.5 times for 5 seconds
Resistance to Soldering Heat	$\pm(1 \%+0.1 \Omega)$	$\begin{aligned} & \hline \text { JIS C5202 } 6.10 \\ & 260^{\circ} \mathrm{C} \text { for } 10 \text { seconds } \\ & \hline \end{aligned}$
Loading Life in Moisture	$\pm(2 \%+0.1 \Omega)$	$\begin{aligned} & \text { J IS C5202 } 7.9 \\ & 40^{\circ} \mathrm{C} 1000 \mathrm{Hr} \text { at RCWV, } 1.5 \mathrm{Hr} \text { ON, } 0.5 \mathrm{Hr} \text { Off. } \end{aligned}$
Exposure	$\pm(2 \%+0.1 \Omega)$	$\begin{aligned} & \mathrm{J} \text { IS C5202 } 7.2 \\ & 1000 \mathrm{Hr} \text { Exposure at } 125^{\circ} \mathrm{C} \end{aligned}$
Load Life	$\pm(3 \%+0.1 \Omega)$	$\begin{aligned} & \text { J IS C5202 } 7.10 \\ & 70^{\circ} \mathrm{C} 1000 \mathrm{Hr} \text { at RCWV, } 1.5 \mathrm{Hr} \text { ON } 0.5 \mathrm{Hr} \text { Off. } \end{aligned}$
Solderability	Coverage $\geq 95 \%$	$\text { J IS C5202 } 6.11$ Immerse for 5 sec in solder at $230^{\circ} \mathrm{C}$

Taping Specifications

Carrier Tape

Embossed

$$
\text { Carrier } \quad \text { Direction of Feed }
$$

Unit: mm

Packaging	Type	\mathbf{A}	\mathbf{B}	\mathbf{W}	\mathbf{E}	\mathbf{F}	$\mathbf{P 0}$	\mathbf{P}	$\mathbf{P 1}$	T1	T2	$\boldsymbol{\varnothing D}$
Tape	CRN16 10R CRN16 10S	6.7 ± 0.2	3.6 ± 0.2	12 ± 0.2	1.75 ± 0.1	5.5 ± 0.1	4.0 ± 0.1	8.0 ± 0.1	2.0 ± 0.1	0.85 ± 0.15	0.23 ± 0.15	$1.5+0.1$
-0												

Unit: mm

Reel Specifications

Type	W	M	A	B	C	D
CRN16 10R	16.5	17.8 CRN16 10S	± 1.5	2.0 ± 0.5	13.5 ± 0.5	21 ± 0.5

Quantities
Unit: mm

Type	T (pcs/reel)
CRN16 10R CRN16 10S	2,000

Thick Film Chip Network and Resistor Arrays

Performance Specifications

Characteristics	Test Methods	Limits
Temperature coefficient JIS - C - 52025.2	Natural resistance change per temp. degree centigrade. $\frac{\mathrm{R}_{2}-\mathrm{R}_{1}}{\mathrm{R}_{1}\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)} \times 10^{6}\left(\mathrm{PPM} /{ }^{\circ} \mathrm{C}\right)$	$\begin{array}{ll} \pm 5 \% & 1 \Omega-10 \Omega \leq \pm 400 \mathrm{PPM} /{ }^{\circ} \mathrm{C} \\ & 11 \Omega-10 \mathrm{M} \Omega \leq \pm 200 \mathrm{PPM} /{ }^{\circ} \mathrm{C} \end{array}$
	R_{1} : Resistance value at room temperature (t_{1}) R_{2} : Resistance value at room temp. plus $100^{\circ} \mathrm{C}\left(\mathrm{t}_{2}\right)$	$\begin{array}{ll} \pm 1 \% & 10 \Omega-100 \Omega \leq \pm 200 \mathrm{PPM} /{ }^{\circ} \mathrm{C} \\ & 101 \Omega-1 \mathrm{M} \Omega \leq \pm 100 \mathrm{PPM} /{ }^{\circ} \mathrm{C} \end{array}$
Short - time overload JIS - C - 52025.5	Permanent resistance change after the application of a potential of 2.5 times RCWV for 5 seconds.	$\begin{aligned} & \pm 5 \% \text { Tolerance } \pm(2.0 \%+0.1 \Omega) \\ & \pm 1 \% \text { Tolerance } \pm(1.0 \%+0.1 \Omega) \end{aligned}$
Insulation resistance JIS - C- 52025.6	Apply 500V DC between protective coating and termination for 1 minute, then measure.	1,000 Meg ohm or more
Dieletric withstanding voltage JIS - C - 5202 6.1.4	Apply 500 V AC between protective coating and termination for 1 minute.	No evidence of flashover mechanical damage, arcing or insulation breakdown
Terminal bending JIS - C - 5202 6.1.4	Twist of Test Board: $\mathrm{Y} / \mathrm{X}=5 / 90 \mathrm{~mm}$ for 10 seconds.	$\pm(1.0 \%+0.05 \Omega)$
Soldering Heat JIS - C - 52026.4	Dip the resistor into a solder bath having a temperature of $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ and hold it for 10 ± 1 seconds.	Resistance change rate is $\pm(1.0 \%+0.05 \Omega)$
Solderability JIS - C - 52026.5	Test temperature of solder $235^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$. Dipping them in solder: 3 ± 0.5 seconds.	95\% coverage Min.
Temperature cycling JIS - C - 52027.4	Resistance change after continuous five cycles for duty cycle specified below:	$\pm 5 \%$ Tolerance $\pm(1.0 \%+0.05 \Omega)$ $\pm 1 \%$ Tolerance $\pm(0.5 \%+0.05 \Omega)$
	$1 \quad-55^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C} \quad 30$ minutes	
	2 Room temp $10 \sim 15$ minutes	
	$3 \quad+125^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C} \quad 30$ minutes	
	4 Room temp 10~15 minutes	
Load life in humidity $\text { JIS - C - } 52027.9$	Resistance change after 1,000 hours (1.5 hours "on" 0.5 hour "off") at RCWV in a humidity chamber controlled at $40^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ and 90 to 95% relative humidity.	$\pm 5 \%$ Tolerance $\pm(3.0 \%+0.1 \Omega)$ $\pm 1 \%$ Tolerance $\pm(1.0 \%+0.1 \Omega)$
$\begin{gathered} \text { Load Life } \\ \text { JIS-C-5202 } 7.10 \end{gathered}$	Permanent resistance change after 1,000 hours operating at RCWV, with duty cycle of 1.5 hours "on", 0.5 hour "off" at $70^{\circ} \mathrm{C} \pm$ $2^{\circ} \mathrm{C}$ ambient.	$\pm 5 \%$ Tolerance $\pm(3.0 \%+0.1 \Omega)$ $\pm 1 \%$ Tolerance $\pm(1.0 \%+0.1 \Omega)$

*RCWV $=$ Rated Continuous Working Voltage $=\sqrt{\text { Rated Power } \times \text { Resistance Value }}$

Marking

1) $\pm 5 \%$ Tolerance: The first two digits are significant of resistance and the third one denotes number of zeros followins Example: $273 \rightarrow 27000 \rightarrow 27 \mathrm{~K} \Omega$
2) Below 10Ω shown as following: Example: $4 \mathrm{R} 7 \rightarrow 4.7 \Omega$
3) $\pm 1 \%$ Tolerance: 4 digits, the first three are significant, the fourth digit is number of zeroes. Letter R is decimal point. Example: $3901 \rightarrow 3900 \rightarrow 3.9 \mathrm{~K} \Omega$

$$
4 \mathrm{R} 99 \rightarrow 4.99 \Omega
$$

4) For E-96 Series ($\pm 1 \%-\mathrm{F}$ Tolerance) in 0603, please refer to page C5.
5) 0402 has no marking.
